Bidirectional Label Propagation over Graphs

نویسندگان

  • Wei Liu
  • Tongtao Zhang
چکیده

Graph-Based label propagation algorithms are popular in the state-of-the-art semi-supervised learning research. The key idea underlying this algorithmic family is to enforce labeling consistency between any two examples with a positive similarity. However, negative similarities or dissimilarities are equivalently valuable in practice. To this end, we simultaneously leverage similarities and dissimilarities in our proposed semi-supervised learning algorithm which we term Bidirectional Label Propagation (BLP). Different from previous label propagation mechanisms that proceed along a single direction of graph edges, the BLP algorithm can propagate labels along not only positive but also negative edge directions. By using an initial neighborhood graph and class assignment constraints inherent among the labeled examples, a set of class-specific graphs are learned, which include both positive and negative edges and thus reveal discriminative cues. Over the learned graphs, a convex propagation criterion is carried out to ensure consistent labelings along the positive edges and inconsistent labelings along the negative edges. Experimental evidence discovered in synthetic and real-world datasets validates excellent performance of the proposed BLP algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bidirectional Semi-supervised Learning with Graphs

We present a machine learning task, which we call bidirectional semi-supervised learning, where label-only samples are given as well as labeled and unlabeled samples. A label-only sample contains the label information of the sample but not the feature information. Then, we propose a simple and effective graph-based method for bidirectional semisupervised learning in multi-label classification. ...

متن کامل

Efficient and Accurate Label Propagation on Dynamic Graphs and Label Sets

Many web-based application areas must infer label distributions starting from a small set of sparse, noisy labels. Previous work has shown that graph-based propagation can be very effective at finding the best label distribution across nodes, starting from partial information and a weightedconnection graph. In their work on video recommendations, Baluja et al. showed high-quality results using ...

متن کامل

Label Propagation on K-partite Graphs with Heterophily

In this paper, for the first time, we study label propagation in heterogeneous graphs under heterophily assumption. Homophily label propagation (i.e., two connected nodes share similar labels) in homogeneous graph (with same types of vertices and relations) has been extensively studied before. Unfortunately, real-life networks are heterogeneous, they contain different types of vertices (e.g., u...

متن کامل

Scalable Label Propagation for Multi-relational Learning on Tensor Product Graph

Label propagation on the tensor product of multiple graphs can infer multi-relations among the entities across the graphs by learning labels in a tensor. However, the tensor formulation is only empirically scalable up to three graphs due to the exponential complexity of computing tensors. In this paper, we propose an optimization formulation and a scalable Lowrank Tensor-based Label Propagation...

متن کامل

Ranking and Semi-supervised Classification on Large Scale Graphs Using Map-Reduce

Label Propagation, a standard algorithm for semi-supervised classification, suffers from scalability issues involving memory and computation when used with largescale graphs from real-world datasets. In this paper we approach Label Propagation as solution to a system of linear equations which can be implemented as a scalable parallel algorithm using the map-reduce framework. In addition to semi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Software and Informatics

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013